Надо ли проводить огневые предполетные испытания?

     Этот вопрос был одним из главным при разработке ракеты "Энергия". Он находился в ряду проблем выбора размерности и количества двигателей этой ракеты, проблем надежности, безопасности и, наконец, престижа создателей этой сложной транспортной системы. Печальный опыт рождения "лунной" ракеты-носителя Н-1 устами участников этой уникальной эпопеи давал однозначный ответ: "Надо. Если бы перед полетом проводились стендовые испытания первой ступени Н-1, то ее судьба была бы наверняка иной." На самом деле, аналог предполетных испытаний - это процедура проверки работающих моторов самолета на различных режимах по заранее предусмотренной программе на взлетной полосе перед разбегом и полетом самолета. Классический довод в пользу предполетных испытаний для летающих аппаратов.
     Следуя этим доводам, в проекте ракетно-космической системы были предусмотрены предполетные огневые технологические испытания каждого блока первой ступени - блоков А, центрального блока - и предусматривалась возможность осуществления предполетных испытаний ракеты в целом с запуском по полетной циклограмме всех восьми двигателей пакета. В технические задания на разработку модуля блока А, на блок Ц были внесены требования к их конструкции и структуре, которые должны были позволять проведение такого рода огневых испытаний блоков. Следуя принципу, что блоки после проведения этих испытаний не должны были подвергаться переборке, разборке, доработке и переоснащению, была принята ориентация придерживаться технологии подготовки и проведения огневых испытаний блоков в их штатной конструкции. Однако тут же возникли проблемы безопасности проведения столь ответственных испытаний, которые с определенной вероятностью могли закончиться аварийным исходом и даже, в худшем случае, со взрывом и разрушениями стендов. Начались попытки разработки необходимо-возможных мер защиты конструкции блока и его агрегатов. Задача совмещения минимального вмешательства в конструкцию и максимальной безопасности была весьма сложной.
     В начале разработки предполагалось огневые предполетные испытания блока А проводить на стенде в НИИХимМаше, в Загорске, где проводились отработочные огневые стендовые испытания. Однако после проведения первого огневого пуска первой ступени ракеты "Зенит", когда ступень в результате аварии двигателя сгорела на стенде "как свечка" гигантских размеров, у руководства КБ "Южное" и Загорского института возникли сомнения в правильности принимаемого решения. Дело в том, что близко к стенду примыкал город, которого во время создания стенда еще не было. Теперь же стенд становился очагом возможных непредвиденных ситуаций, учитывая, что количество огневых испытаний на стенде возрастет, когда пойдет цепочка товарных блоков А. Плюс к этому - так как в распоряжении был всего один стенд, то цепочка выстраивалась в непрерывные работы по осуществлению огневых пусков с частотой 1 пуск в 2-3 месяца. Четыре блока А, которые требовались всего для одной ракеты, комплектовались в течение целого года. Цепочка вытягивалась и диктовала возможные темпы пусков "Энергии" - простыми расчетами определялось, что в год мог быть осуществлен только один пуск этой ракеты.
     Для блока Ц проблемы в этом плане были яснее. Здесь просто не было такого стенда - его надо было строить.
     Началось проектирование стенда. Инженерное проектирование стенда как строительного сооружения вел ГИПроМаш, главный инженер проекта Б.Н.Черкасов, разработку как технического, целевого сооружения вел ЦКБОМ, главный конструктор В.П.Бармин.
     Структура стенда комплексировалась. Стенд должен был позволять проводить огневые испытания блоков А и Ц как в отдельности, так и в группах. Но главным было то, что он же должен был давать возможность проводить огневые стендовые испытания ракеты в целом. Последнее требование вынуждало создавать колоссальную силовую конструкцию, которая должна была удерживать ракету с двигателями, имеющими в сумме тягу 3600 т. Продолжительность работы двигателей на режимах, длительность которых должна быть хотя бы равной времени полета первой ступени, превышала термодинамические нагрузки, которые приходились бы на газоотражательную систему при простом старте этой же ракеты. Вот почему этот стенд имеет такой мощный односкатный лоток.
     Задача универсализации стенда решалась практически сама собой: если стенд выдерживал огромные нагрузки всех видов при огневых испытаниях, то нагрузки от стартующей ракеты были существенно ниже. Так стенд стал и стартом. С этого времени он назывался универсальным комплексом "стенд-старт" (в нашей профессиональной аббревиатуре - УКСС). Для чистоты изложения следует отметить, что возможности старта и УКСС позволяли дооснащение другими, специфичными для летных ракет, системами и средствами.
     Удаленность этого стенда от монтажно-испытательного корпуса была выбрана из расчета возможной аварии, при которой мог произойти взрыв. Взрыв не должен был повлиять на технические сооружения этого района.
     Вырисовывалась уникальная конструкция. Даже те, кто в свое время валил все на то, что не было такого стенда во времена Н-1, начали сомневаться в его целесообразности, вернее, в неизбежности затрат на его создание. Следует отдать должное В.П.Глушко как генеральному конструктору, которому пришлось выдержать жесточайшие споры с руководством Министерства и строителями, настаивая на его введении в строй не позднее начала летных испытаний ракеты. Была тенденция в первую очередь переоборудовать старты Н-1 под "Энергию", начать первые пуски, затем к штатной эксплуатации его ввести в строй. Глушко отстоял свою позицию с помощью Д.Ф.Устинова. Стенд строился колоссальными усилиями строителей многих министерств во главе с Министерством общего машиностроения.
     Стенд позволял проводить все виды запланированных работ. Связь ракеты, установленной на старте, со стендом осуществлялась через переходной блок - блок Я. Этот блок выполнял многие функции и позволял, не меняя, не дорабатывая стартовое пусковое устройство стенда, или по-другому стол, комплектовать пакет в любых сочетаниях блоков в пределах запроектированных.
     Наиболее подготовленным для проведения огневых испытаний блоков А стал по результатам проработки вариант установки на стенд-старте одновременно четырех блоков А в составе технологической ракеты с технологическими блоками Ц и Я.
     В этом варианте для сборки, транспортирования, установки на стенд и проведения испытаний могло применяться штатное оборудование, используемое для летного варианта ракеты. Программа проведения огневых технологических испытаний принималась аналогичной тридцатисекундному запуску.
     На стенд-старте предусмотрено подтверждение (с помощью специальных систем) нормального функционирования двигательной установки в ходе подготовки ступеней к пуску при проведении контроля параметров процесса подготовки, температуры, режима запуска, термостатирования компонентов, режимов захолаживания двигателей, режимов зарядки баллонов, наддува баков. При этом в ходе подготовки к пуску и запуску двигателей до команды "Главная" производится автоматический контроль срабатывания агрегатов пневмогидравлической системы с прекращением подготовки в случае обнаружения отказа. В ходе запуска двигателей блоков А производится также автоматический контроль работоспособности двигателей с помощью системы аварийной защиты двигателей с возможностью их аварийного выключения.
     Это был наиболее быстрый, экономичный и обеспеченный на то время способ проведения огневых технологических испытаний блоков А. Однако его особенность -заправка и запуск одновременно всех четырех блоков А - существенно увеличивала по сравнению с огневыми испытаниями одиночного блока А вероятность аварийного исхода, и размер аварийных последствий, что заставило осторожней подойти к принятию такого варианта проведения испытаний блоков А. На него можно было идти после этапа опытно-конструкторской отработки ракеты, когда будет большая статистика по пускам ракет и ступеней, подтверждающая достаточно высокий уровень надежности и живучести блоков А.
     Другим способом организации огневых испытаний блоков А был вариант, когда испытываемый штатный блок А устанавливается на стенде в составе “полупакета”, представляющего собой сборку из двух блоков А, один из которых является технологическим, другой - подвергаемым испытаниям в штатном исполнении, технологического блока Я и специальной силовой рамы. Конструкция силовой рамы имитирует верхний силовой пояс ракеты "Энергия" и обеспечивает стыковку сборки со штатным транспортно-такелажным оборудованием. Возможен вариант, когда оба блока А, входящие в "полупакет", - штатные, и оба подвергаются огневым технологическим испытаниям. Таким же образом может быть проведено испытание четырех штатных блоков А попарно.
     Огневые испытания блока Ц могут проводиться по схеме стендовых испытаний экспериментальной ракеты 5С.
     Строительство стенда завершалось. Его циклопические очертания заставляли вновь возвратиться к необходимости и неизбежности проведения предполетных испытаний на этом уникальном стенде. Несмотря на то, что стенд рассчитывался на возможные аварии и предполагаемая степень его разрушения при этом была известна, одолевало беспокойство, поскольку такой стенд - один на весь Советский Союз. В Америке их было три. Если подорвем, то остановимся надолго.
     Анализ результатов математического моделирования позволил выявить основные параметры, определяющие целесообразность проведения огневых технологических испытаний ступеней и пакета. Был сделан вывод, что ведущим в определении оптимальной стратегии летных испытаний ракеты-носителя "Энергия" " с проведением или без проведения огневых испытаний - является определенное отношение стоимостей ракеты-носителя, полезного груза и стендовых или стартовых сооружений. При этом бралось в основу, что полное выявление возможных аварийных ситуаций при проведении огневых испытаний недостижим, и эффективность системы аварийной защиты, которая упреждает катастрофический исход, не стопроцентная. Исходным положением было то, что уровень надежности ракет-носителей не ниже расчетного, установленного для этого этапа. Достижение нужного уровня надежности давало определенную надежду и уверенность, на основе которых можно было бы строить дальнейшую тактическую программу.
     На самом деле, самолеты, даже пройдя предполетную "газовку" двигателей, к несчастью, терпят аварии, ракеты, проходящие предполетную проверку огневыми пусками, стартуют не без замечаний...
     Возникал вопрос о поиске оптимального объема огневых испытаний, о методике. Некоторые при очередном споре с заказчиками, которые во главе со своим командующим настаивали на огневой проверке, злословили: "Может быть сделать вначале пробный полет, чтобы удостовериться окончательно в положительном исходе штатного полета?" Это казалось абсурдным, но позднее данная мысль разовьется и примет реальные формы решения.
     По результатам проведенных ранее рядом институтов ракетной отрасли исследований и анализов была показана эффективность огневых испытаний ракетных ступеней и пакетов в целом как метода предотвращения аварий ракет-носителей в полете. Считалось, что в случае проведения предполетных огневых испытаний ракетных блоков могло быть выявлено от 40-45 до 60-80 % дефектов, приведших к авариям в полете. Разброс в оценках связан с различием в классификации отказов и объеме статистической выборки, принятых разными авторами. В случае проведения контрольно-технологических огневых испытаний двигателей, выявляющих от 20-30 до 32-40 % дефектов, огневые испытания ракетных блоков могли бы выявить дополнительно к испытаниям двигателей до 23-42 % дефектов, приводящих к аварии в полете.
     Особое внимание к решению вопроса целесообразности проведения испытаний ракетных блоков и пакета огневым запуском двигателей связано с тем, что одной из основных неудач в полетах ракеты-носителя Н-1 являлась, по утверждению ряда крупных специалистов, то, что первая ступень не проходила предварительной предполетной подготовки на стенде с запуском маршевых двигателей.
     Утверждалось, что эффективность такого рода испытаний подтверждается и опытом работ в США. Так, все ступени ракеты "Сатурн-5" проходили предполетные огневые испытания, при этом дважды были выявлены дефекты, которые могли бы привести к аварии в полете. На ступени S-1C-511 была выявлена течь трубопровода на 96-й секунде, приведшая к пожару, а на ступени S-2C-505 - отклонение от расчетного режима работы двигателя. После устранения дефектов эти ступени были успешно использованы в составе "Сатурна-5" при запусках кораблей "Аполлон-10" и "Аполлон-16".
     По программе "Спейс Шаттл" также проводятся огневые испытания каждого нового образца орбитальной ступени продолжительностью до 20 с. При этом каждое испытание позволило выявить дефекты, многие из которых были критическими для безопасности полета этой многоразовой транспортной системы.
     В соответствии с первичными проектными документами целью огневых технологических испытаний является, в конечном счете, общий технический контроль правильности выполнения технологических операций изготовления и сборки элементов, узлов, агрегатов и систем ракетного блока с комплексной их проверкой на функционирование и взаимосвязь.
     Перед проведением огневого испытания блок ступени ракеты-носителя должен быть укомплектован штатными двигателями, пневмогидравлической системой, системой управления - в общем, всеми бортовыми системами - и пройти всю совокупность автономных и комплексных испытаний. Схема закрепления блока в стенде должна по возможности полностью имитировать условия нагружения конструкции блока при старте ракеты и на начальном участке полета, а стендовый имитатор комплекса внешних нагрузок должен обеспечивать требуемые степени свободы блока при его малых смещениях относительно центра масс и необходимую жесткость при передаче внешних усилий и моментов.
     В процессе поиска однозначных решений были проанализированы результаты 3722 пусков ракет-носителей и баллистических ракет за период с 1957 по 1987 г. С целью получения статистической достоверной, однородной информации, результаты пусков рассматривались применительно к условиям функционирования ракет. Наряду с этим принималась во внимание преемственность конструкции и производства, методов экспериментальной отработки и испытаний. Исключены из рассмотрения отказы, обусловленные спецификой боевого использования ракет, а также дефекты, не характерные для сегодняшнего уровня ракетно-космической техники.
     Анализ полученной таким образом статистической совокупности показал, что физическая структура дефектов (имеется в виду соотношение между производственно-технологическими и конструктивными) сохраняется, а количество дефектов, приходящихся на единичный блок, не претерпевает существенных изменений во времени.
     По агрегатам и системам ракет отказы распределяются таким образом: конструкция - 31, двигатели - 41, система управления - 28, все значения в процентах. По причинам отказов: конструкторские - 34, производственно-технологические - 56, эксплуатационные - 4, не установленные причины - 6 %. По оценке отраслевых институтов, огневые технологические испытания ракетных блоков без проведения контрольно-технологических испытаний пневмогидравлической системы могли бы выявить 66 % дефектов. Огневые испытания блоков с предварительным проведением испытаний двигателей и систем выявили бы 27 % дефектов. Контрольно-технологические испытания двигателей обнаружили бы 39 % неисправностей, а автономные и комплексные испытания выявили бы лишь 6 % дефектов. Достаточно большое количество отказов происходит на стыке систем.
     Одновременно был проведен анализ отказов с целью оценки эффективности огневых испытаний блоков А по дефектам, выявленным при огневых стендовых испытаниях экспериментальных блоков А и летным испытаниям модуля блока А в составе ракеты "Зенит". В основном все выявленные дефекты носили конструкторский характер.
     Но возможности огневых технологических испытаний по выявлению и парированию этих дефектов ограничены. Это связано то с недостаточной надежностью средств измерений, в основном датчиков, то с нехваткой времени по продолжительности контрольных технологических огневых испытаний, то просто не предусмотрены достаточные конструкторские запасы по ресурсу и усталостной прочности, то с незавершенностью экспериментальной отработки агрегатов и в том числе двигателя, то с электрической схемой, с неправильностью реальной адресовки команд, то с несовершенной расчетной моделью, сформированной на недостаточно полных экспериментальных данных и статистике, то с отказами, которые не могут быть обнаружены огневыми испытаниями, например, несброс головного обтекателя.
     Однако есть пример, который приводят заказчики, когда технологические испытания ступени могли бы предотвратить аварию ракеты-носителя "Зенит", сопровождавшуюся взрывом двигателя РД-170. Как известно, в результате взрыва был разрушен старт ракеты, который до сих пор не восстановлен. Если бы проводили огневые технологические испытания, то разрушили бы стенд. Разницы в результатах, к сожалению, нет. Одна была надежда на систему защиты двигателя. Но главное все же - в надежности.
     Напрашивался вывод: чтобы достичь нужного уровня надежности и безопасности, необходимо вести, прежде всего, достаточно полную наземную экспериментальную отработку любой создаваемой ракетной конструкции, в том числе и с целью отработки технологии изготовления. Необходима отработанная и достоверная методика объективного контроля ракет, поставляемых на старт.
     К тому времени был внедрен ряд следующих мероприятий, направленных на совершенствование предпускового контроля ракетных блоков в целом:
     - огневые контрольно-технологические испытания каждого двигателя без последующей переборки и замены основных узлов и агрегатов;
     - контроль запуска и работы двигателя системой аварийной защиты;
     - система аварийного выключения отдельного двигателя РД-0120 или РД-170 по сигналу системы аварийной защиты до команды "Главная", т.е. за 0,4-0,5 с до старта ракеты. Предусмотрена отсечка аварийного двигателя.
     Весомым решением было введение холодных технологических испытаний пневмогидравлической системы блоков А и Ц, обеспечивающих контроль, во-первых, отсутствия в магистралях засорения и правильности расстановки расходных сопел и шайб, это - сложнейшая методика, основанная на закономерности перетекания газов по тракту из различных полостей, с замером отклонений от этих законов; во-вторых, функционирования электро-пневмоаппаратуры и агрегатов автоматики, правильности адресовки магистралей и электрических цепей; в-третьих, точности настройки регулирования агрегатов и сигнализаторов; в-четвертых, герметичности отдельных пневмогидравлических систем и систем питания и управления пневмо-гидравликой в целом. Суть "холодных" технологических испытаний сводится к воспроизведению полета без запуска двигателей, но со срабатыванием всех элементов, кроме пиротехнических, в циклограмме полета. Расход топлива имитируется газом. Ракета как бы летит.
     Максимум операций по подготовке ракеты к пуску переместился на время до запуска двигателей. После команды на запуск двигателей в составе блока Ц работают только агрегаты регулирования наддува баков и клапанная система, обеспечивающая наддув баков кислорода по байпасной линии и слив кислорода из стояка циркуляции. Агрегаты, выполняющие эти операции, задублированы. Включение и контроль системы рулевых приводов на блоке Ц производится тоже до запуска двигателей РД-0120.
     Введены фильтры в магистрали питания на входе в двигатели и ужесточены требования к контролю чистоты внутренних полостей баков и пневмогидравлической системы ракетных блоков.
     Предусмотрено резервирование линий подачи управляющего давления со стороны наземного комплекса. Управляющее давление для линий кислорода и водорода раздельны.
     Эффективность конструкторских мер проверена при холодных технологических испытаниях пневмогидравлической системы блока Ц экспериментальных ракет 4М, 5С и 6СЛ. При этом на заключительном этапе было выявлено и устранено 11 дефектов, которые могли бы привести к возникновению нештатной ситуации в ходе дальнейших работ. Кроме того, с помощью отработанной методики на основе экспериментальных данных по гидравлическим характеристикам стало возможным дать оценку состояния магистралей систем ракеты 5С и в том числе принять оперативное решение по отклонению этих характеристик магистралей термостатирования.
     Основные агрегаты автоматики пневмогидравлической системы ракетных блоков участвуют в работе только на этапе подготовки двигателей к запуску. С начала запуска работает автоматика регулировки наддува и давления в баках и включается в работу пневмоклапан бортового наддува.
     После срабатывания контакта подъема ракеты задействуется девять наименований автоматики блока Ц. Выполнение команд этими агрегатами дублируется и обеспечивается контролем с началом запуска двигателей. При этом отказ любого из девяти агрегатов не приводит к аварии ракеты.
     Отмеченные конструктивные особенности предпускового контроля учитывались в оценке эффективности огневых технологических испытаний блоков и пакета в целом.
     В качестве дополнительных мер, направленных на обеспечение безаварийного пуска ракеты, в циклограмму запуска двигателя блока Ц заложено смещение на время, которое выбрано исходя из того, чтобы проконтролировать прохождение всех процессов в двигательной установке с выходом на 80 % номинального режима до подачи команды "Главная" для двигателей блока А.
     Разновременность запуска двигателей РД-170 и РД-0120 позволяет до начала движения - полета ракеты - контролировать выход двигателей РД-0120 и всех основных систем блока Ц практически на номинальный режим, пройти все переходные и динамические процессы, сопровождающие запуск двигателей РД-0120, выявить возможные дефекты и своевременно выключить двигательную установку.
     Что касается проверки системы управления, то проведение огневых технологических испытаний не повышает надежность бортовой системы управления, и возможности этих испытаний как операции контроля ограничены. Контроль состояния и качества системы управления - это особое, самостоятельное направление в обеспечении надежности ракеты.
     Конструкторская документация блока Ц на всех этапах проектирования подвергалась экспертизе на технологичность. Отработка и освоение технологических процессов производились в соответствии с комплексным планом экспериментальной отработки на ракетах 1T, 4М, 5С и 6СЛ. Для изготовления блока Ц были разработаны 57 директивных технологических процессов, которые охватывали методы контроля герметичности, очистки и обезжиривания внутренних поверхностей баков, емкостей и трубопроводов, вновь разработанных видов сварки типа электронно-лучевой, импульсно-дуговой, мехобработку вафельного фона обечайки бака горючего, изготовление деталей из композиционных и теплозащитных материалов, нанесение теплоизоляции и теплозащитного покрытия. Технология была отработана.
     Сравнительный анализ отказов ракет предыдущих разработок и современного состояния технологии изготовления и контроля внедренных на модульной части блока А мер конструктивного характера дают возможность считать, что уровень надежности модульных частей после их контроля достаточен.

     Основные конструктивные меры. На всех магистралях блока в расходных каналах перед дозирующими жиклерами установлены фильтры. Введено дублирование основных электроклапанов двигателя, предварительного и основного наддува баков. Резервированы системы наддува в целом. На случай разгерметизации пневмосистемы двигателя РД-170 удержание агрегатов автоматики в рабочем режиме производится давлением компонентов. В целях безопасности в полете производится продувка хвостового отсека азотом.
     Холодные технологические испытания блока А проводятся с подачей газов высокого давления со срабатыванием всей электро-пневмоавтоматики и проверкой функционирования концевых контактов и сигнализаторов давления. При этом полученные характеристики сравниваются с эталонными. Непосредственно в ходе огневых технологических испытаний проверяются прямым или косвенным путем работы 64 элементов автоматики, не проверяются 16 элементов. При холодных технологических испытаниях не проверяются только 4 - это пироклапаны, которые проверяются электрическим методом "обтекания". Проведение холодных технологических испытаний дозволяет проверить точность настройки сигнализаторов давления и редуктора, правильность адресовки, состояния магистралей и электрических цепей.
     С учетом объема проверок при контрольных испытаниях двигателей, холодных технологических испытаний ступеней, совместных автономных и комплексных испытаний систем ракеты с системами стартового комплекса и бортовой системы управления, проверок на этапе предстартовой подготовки вплоть до "контакта подъема" в полном объеме проверяются 10 систем, в неполном - еще 10. По системам неполной проверки: система рулевых приводов в составе пакета проверяется с качанием камер, но с технологической схемой управления; система основного наддува проверяется, но не на полное рабочее время, в том числе и при огневых испытаниях, этот недостаток парируется дублированием клапана наддува и резервированием системы в целом; система измерений на работоспособность ракеты не влияет; система управления расходом топлива дублирована и резервирована по элементам, например, в датчике используются 6 поплавков, отказ может быть при нарушении герметичности или одновременного завивания трех поплавков; система аварийного слива проверяется только при криогенной температуре и давлении в баке и опробуется при заправке.
     Надежность конструкции модульной части подтверждается многократностью ресурса при отработке в рамках программы обеспечения надежности и системой многократного контроля каждого элемента. Дефекты материалов двигателя выявляются при контрольно-технологических испытаниях двигателя.
     До срабатывания контакта подъема при старте на ракете контролируются почти все системы блоков А, кроме систем основного наддува, управления расходом топлива и рулевых приводов. В процессе подготовки в автоматическом режиме производится 11 раз опрос состояния систем с контролем исполнения команд и возможностью прекращения подготовки при обнаружении неудовлетворительного состояния.
     За период изготовления модульной части блока А была отработана конструкторская документация и проверена технологичность заложенных конструкторских решений. Разработаны около 2600 технологических процессов, спроектировано около 7000 единиц оснастки.
     Уровень унификации модульной части блока А с ракетой-носителем "Зенит", летные испытания которого должны были по планам опережать работы по сборке ракеты “Энергия”, составляет 0,75. Конструкция баков модульной части блока А предусматривает применение идентичных с первой ступенью ракеты "Зенит" заготовок основных и силовых элементов, шпангоутов, днища, обечаек, шаробаллонов, трубопроводов, автоматики. Преемственность по технологическим процессам - свыше 80, по оборудованию -100, по специальному оборудованию - 90 %.
     Контрольно-технологические испытания двигателей РД-0120 и РД-170 были усложнены и включали в себя проведение двух испытаний каждого двигателя. Второе испытание введено для сопоставления параметров и характеристик при двух идентичных испытаниях и установления факта их стабильности и достижения точности настройки двигателя путем поднастройки по результатам первого огневого испытания и проверки вторым пуском. На двигателях РД-170 после проведения огневых испытаний проводится чистка внутренних полостей двигателя от остатков компонентов топлива. Статистика проведения контрольных технологических испытаний двигателей свидетельствует, что в ходе их выявляется значительное количество неисправностей производственно-технологического характера, вплоть до аварийного исхода. Огневые испытания двигателей, являясь неотъемлемой частью производственного процесса, обеспечивают должный уровень надежности и безаварийности.
     Таким образом, контрольно-технологические огневые испытания двигателей РД-0120 и РД-170, без переборки перед поставкой, холодные технологические испытания пневмогидравлической системы блоков Ц и А и контрольные испытания на заключительном этапе изготовления ступеней, контрольные испытания ракеты в целом на старте, а также контроль процессов подготовки ракеты к пуску, автоматический контроль срабатывания агрегатов автоматики и работы двигателей в ходе подготовки к пуску и при запуске двигателей до команды "Главная" с помощью бортовой системы и других систем управления комплексом позволяют в достаточно полном объеме провести проверку правильности функционирования двигательных установок блоков А и Ц.
     Потенциальные же возможности огневых технологических испытаний как операции контроля сводятся к определению работоспособности конструкции при нагружении ее в стендовых условиях функционирования ступени и зависят от степени приближения их к штатным.
     На основе анализа результатов огневых стендовых испытаний экспериментальных блоков Ц типа 5С установлено, что уровень и время действия акустического и вибрационного воздействия при проведении огневых испытаний не превышает нормы, установленные для летных ракет-носителей "Энергия", кроме донной защиты. Время действия вибронагрузок на донную защиту блока Ц в 12 раз превышает время их действия при штатной работе ракеты. Этот факт стал одним из решающих при определение целесообразности огневых испытаний пакета.
     По результатам анализа всей имеющейся статистики отечественных ракет-носителей и баллистических ракет, не имея общепринятых принципов, критериев, методов, алгоритмов, позволяющих проводить однозначную классификацию статистики пусков с точки зрения оценки возможности выявления и устранения за счет проведения комплексных контрольных мер конкретных конструкторских недоработок и производственных дефектов, было установлено: доля выявляемых дефектов при контрольно-технологических испытаниях двигателей составляет 53 %, при холодных технологических испытаниях пневмогидравлической системы, автономных и комплексных испытаниях и предполетном контроле - 47 %. Статистическая выборка сделана тем же методом по 3722 пускам ракет-носителей и баллистических ракет, при этом суммарное количество ракетных блоков в этих пусках составляет 13626.
     Однако существуют отказы и после проведения всех видов такого рода автономных и комплексных испытаний. Речь идет об отказах, которые могут возникнуть в связи с нарушением принципа прекращения доступа к системам после проведения контрольных операций. Тогда остается два варианта - или выявлять этот отказ в период проведения циклограммы подготовки и пуска ракеты, или проводить огневой технологический пуск. При исходе испытаний или пуска с аварией, да еще со взрывом, встает вопрос, целесообразно ли методом взрыва выискивать дефект. Абсурд. Значит, мы по кругу возвращаемся к принципу наименьшего ущерба в любой ситуации. Если причина аварии проявилась при огневых операциях, то эти испытания должны быть проведены на огневом стенде, а не на стенде огневых испытаний ступени и тем более не на огневом стенде пакета.
     Следует отметить к этому, что в отечественной ракетной технике нет опыта в проведении дефектации блоков после огневых испытаний, в связи с чем нет полной гарантии, что образовавшиеся дефекты будут обнаружены и что при осмотре не будут внесены новые дефекты. Значит, в любом случае, должна быть конструкция, которая позволяла бы проведение огневых испытаний без последующих замен элементов и узлов.
     Статистика показывала, что в ходе диагностики материальной части после проведения огневых испытаний собранной ракеты привносится большое количество дополнительных дефектов. Повреждаются теплоизоляция, датчики системы измерений, кабельная сеть, целостность пневмо-гидромагистралей. И это все помимо естественного уменьшения располагаемого ресурса в ходе испытаний. Последнее соображение носит принципиальный характер.
     Решение вопроса о целесообразности проведения огневых технологических испытаний ракет зависит от ряда условий и не может быть однозначным. Ссылки на тот или иной опыт - будь то американский, с отработкой носителя "Сатурн-5", или наш, с носителем Н-1, - не учитывают в полной мере конкретных особенностей и возможностей, складывающихся в ракетной технике в тот или иной период не состоятельны.
     Американцы, по имеющейся информации, пошли на обширную программу стендовых испытаний ступеней при создании носителя "Сатурн-5", имея в своем распоряжении ряд стендов и не закончив автономную отработку маршевых двигателей этого носителя. По опубликованным данным, в случае аварии на стенде он мог быть восстановлен за 3 - 4 месяца.
     Есть логика и в проведении ими огневых приемочных испытаний орбитального корабля системы "Спейс Шаттл", подготовленного к запуску. Твердотопливные же ускорители не могут подвергаться огневым испытаниям в составе собранного и подготовленного к пуску носителя - это очевидно. Кроме того, их надежность оценивается американскими специалистами настолько высоко, что в документах Конгресса она условно принята равной единице. Коэффициент многоразовости по отдельным агрегатам маршевых двигателей орбитального корабля системы "Спейс Шаттл" существенно отличается от 1, ряд агрегатов меняется после каждого полета, имеются конструктивные особенности, связанные с наличием подвесного топливного отсека и разъемными соединениями топливных магистралей - все это делает оправданным огневую проверку подготовленного к старту орбитального корабля.
     Неудачи в ходе летных испытаний ракеты Н-1 имели место при не до конца отработанных маршевых двигателях и недостаточном общем объеме наземной экспериментальной отработки носителя. Только по результатам четвертого пуска, например, специалисты пришли к выводу о необходимости установки демпфирующих устройств в расходных магистралях кислорода на первой ступени. После первых пусков проводились работы по существенному повышению мощности двигателей управления по крену на первой ступени. Весьма спорными и не вполне отработанными были конструктивные и принципиальные решения по системе раннего предупреждения аварии - КОРД.
     Надежность, безотказность, безаварийность и безопасность ракет-носителей обеспечивается большим числом наземной экспериментальной отработки. Исследования и испытания проходят все системы и агрегаты комплекса. Первый этап испытаний -автономные, на специальных многочисленных стендах. Виды испытаний: конструкторско-доводочные, чистовые, контрольно-технологические, контрольно-выборочные, испытания на надежность и ресурс, прочностные и климатические испытания. На собранных и подготовленных к пуску ступенях ракеты-носителя проводится значительный объем электроиспытаний и так называемые холодные технологические испытания. В ходе этих испытаний проверяется функционирование всех магистралей и клапанов в процессе имитации штатного функционирования пневмо-гидросхемы.
     Возникший вопрос о необходимости и целесообразности проведения огневых стендовых испытания полностью собранных ступеней, а в случае "пакетной" схемы - и всего носителя в целом, особенно актуален, но неоднозначен ответ на этот вопрос для носителей тяжелого и сверхтяжелого классов.
     С одной стороны, учитывая высокую стоимость таких разработок и собственно материальной части, риск потери и носителя, и полезного груза даже в ходе первых пусков должен быть сведен к минимуму. С этой точки зрения полезно убедиться в работоспособности всего комплекса в целом в наземных условиях, проведя серию огневых стендовых испытаний. С другой стороны, созданы уникальные стенды, стоимость которых в много раз превышает стоимость самой ракеты. А если стенд один и в ходе испытаний будет выведен из строя, то на время его восстановления затормозится работа всей кооперации. Ведь при серьезной аварии восстановление стенда могло занять несколько месяцев - до года.
     Неоднозначность ответа привела к необходимости создания специальной комиссии, которая была утверждена решением Военно-промышленной комиссии Президиума Совмина. Председателем комиссии был назначен академик, вице-президент Академии наук К.В.Фролов, в комиссию вошли ведущие ученые страны, специалисты в областях ракетной техники, авиации, ядерной науки и, естественно, разработчики ракеты и генеральные заказчики.
     Вывод комиссии однозначно подтверждал необходимость выполнения определенного (необходимого и достаточного) объема экспериментальной отработки всех элементов, агрегатов, систем и ракеты в целом до выхода на огневые стендовые испытания. Это подтверждение было важным для разработчиков как вспомогательное оружие в борьбе за полноту отработки и с поползновениями некоторых организаторов к ее сокращению. Справедливости ради - этот пункт не оспаривался никем.
     Так же бесспорным было решение о программе огневых стендовых испытаний ступеней, как конструкторских, неизбежных, входящих в план экспериментальной отработки комплекса.
     При этих двух условиях и с учетом того, что есть виды нагрузок на ракету, возникающие при проведении огневых предполетных испытаний на стенде, которые существенно превышают полетные, и ракета не выдержит их без переработки ее конструкции, апологеты этих испытаний согласились на первых пусках их не проводить. Последний довод был больше той каплей, которая склонила оппонентов к решению идти вперед. Дело в том, что упоминавшиеся повышенные нагрузки на донный экран блока Ц могли бы быть парированы доработкой, которая осуществлялась несложно, а остальные утверждения о прочности комлевой части этого же блока не имели оснований В пылу спора эти заявления были сделаны генеральным конструктором. Это был тот тезис, который был оправданием для генерального заказчика перед... Перед кем - вернемся к этому ниже.
     Среди апологетов проведения предполетных огневых испытаний были не только заказчики, которые в принципе стоят на страже качества и надежности, и в этом их упрекнуть нельзя. Даже более - следует их благодарить, потому что только в обстановке спора если и не рождается истина, то укрепляется принимаемое решение, и настаивающие на нем сами вынуждены еще и еще раз рассматривать самые невозможные доводы и проверять себя в утверждениях.
     Комиссия сыграла весьма полезную роль. Константин Васильевич Фролов сумел свести бурные страсти к единому мнению.
     Другая часть апологетов - среди самих разработчиков, которые в свое время закладывали эти виды испытаний в программу. Для них были еще свежа драма Н-1. Эта часть не заняла твердой позиции, но, видимо, оставила за собой право высказать свое отношение к ломке программы. Боролись боязнь и смысл. Но нельзя же ради боязни поступаться здравым смыслом. Сторонниками исключения предполетных огневых проверок были организаторы разработки ракеты-носителя и блоков, а соглашались выполнять все условия по доведению до нужного уровня надежности двигателисты.
     У разработчиков системы управления были свои проблемы.
     Настаивающие на проведении огневых предполетных испытаний ракеты на специальном стенде в более узком кругу твердили, что главной причиной неудач с Н-1 было отсутствие такого стенда. Если будет принято решение отказаться от стенда для предполетных испытаний, то какая цена выводам по Н-1. И последний довод: если будет авария, то имейте в виду - прокурор вступит в силу...
     Да... предупреждение не техническое, но, как и авария, имеет свою степень вероятности.
     В работе комиссии участвовал академик Валерий Алексеевич Легасов, который постоянно предупреждал, что любая техническая система такого рода на пороге ее эксплуатации должна иметь надежность достаточно высокую и приводил в пример действующие системы атомных электростанций, у которых статистическая надежность была на два порядка выше, чем у нашей системы. Он нас отрезвлял... Мы тогда, конечно, не подозревали, что через несколько месяцев произойдет трагедия в Чернобыле. Даже такие системы могут терпеть аварии. Абсолютно надежных систем нет, но опять же приходит на ум довод в пользу стремления уменьшить размеры возможного ущерба.
     Кстати, 5 мая 1986 года мы были очевидцами реакции общественности Киева на аварию в Чернобыле, произошедшую несколькими днями раньше. Железнодорожный вокзал был забит желающими выехать из города. Кто-то усиленно устрашал население. Поливальные машины регулярно обмывали улицы и деревья водой. Нас поселили на верхних этажах гостиницы - менее опасно. Мы ни по каким признакам не ощущали этой опасности. На базаре продавали первые овощи - редиску, огурцы (видимо, парниковые), все было дешево. На заводе КРЗ, куда мы прибыли самолетом из Байконура во главе с министром, режим работы никак не изменился. Гостеприимный Д.Г.Топчий, как всегда, по-украински тепло принимал гостей, правда, с начальством. Завод производил аппаратурную часть системы управления ракеты "Энергия". Были проблемы.
     Дмитрия Гавриловича я знал давно - еще по системам боевых ракет. Рачительный хозяйственник и дальновидный директор крупного радиозавода.
     Чернобыль нас не охладил, а скрепил в понимании необходимости реализации программы ракеты "Энергия" по нашему плану.
     В это время полным ходом шло изготовление ракеты 6СЛ. Реализовывался вариант "пробного полета". Мы его назвали "опережающим". По нашим доводам, опережающим летные испытания комплекса в целом - как экспериментальный пуск. Нам от этого пуска надо было хотя бы тридцать секунд полета. Эти с давали нам многое: во-первых, вся бортовая система, в то числе двигатели, к этому времени (даже раньше) уже находятся в установившемся режиме полета, и даже если бы произошла авария, то и тогда мы получили бы ценнейший материал для изучения работы сложнейшей системы; во-вторых, по истечении 30 секунд полета уникальный стенд-старт находился бы в безопасном состоянии - это было главным.
     Пробивать идею "опережающего пуска" активно взялся О.Д.Бакланов. Сколько было совещаний и бесед у него в кабинете с А.А.Максимовым... Мы, участвуя в этих "задушевных" встречах, вооружались каждый раз новыми доводами. К пуску приближались постепенно - шаг за шагом.


Далее...